Ultra-Low-Latency 10GE PHY+MAC

Description

Having the lowest network latency is critical for Accelerated Finance. To achieve the lowest Ethernet latency, it is necessary to optimize the layer-1 PHY and the layer-2 MAC. Algo-Logic Systems' Ultra-Low-Latency (ULL) PHY+MAC minimizes roundtrip latency by several hundred nanoseconds as compared to vendor supplied IP cores. Algo-Logic Systems’ ULL PHY+MAC design implements 10GBASE-R MAC and PCS (Physical Coding Sub-layer) functionality in an FPGA by using logic optimized for latency.

The ULL PHY+MAC is compatible with multiple FPGA platforms that support SERDES rates of 10.3125 Gbps while bypassing all PCS and excessive buffering features. The MAC interfaces to user logic via the 64-bit or 32-bit Avalon-ST bus or AXI4-Stream standards.

The Ethernet Frame Check Sequence (FCS) within the transfer is automatically added in the transmit direction; the FCS is checked, indicated, and removed in the receive direction. The only padding done is on the transmit side (Tx) if the transmitter MAC sees fewer than 60 bytes. On the receive side (Rx), the MAC passes the packet that it receives without change.

In this fashion Algo-Logic Systems' ULL PHY+MAC is designed to seamlessly replace much slower default PHY+MAC implementations that come with standard FPGA platforms.

Key Features

- Ultra-low-latency round-trip (fiber-to-fiber or gate-to-gate) for 10 Gigabit Ethernet, first-bit to first-bit
- Reconciliation sub-layer implementation compliant with IEEE802.3
- Local fault and remote fault detection and handling
- Frame Check Sequence (FCS) insertion and verification at line rate
- Automatic transmit padding, jumbo frame support, transmit and receive statistics counters
- Compatible with multiple FPGA platforms as soft-logic around SERDES
 - Supports both standard Avalon-ST / AXI4-Stream bus interfaces
 - Direct replacement for high-latency default vendor cores
- High level architecture Ethernet MAC design is flexible in its use of system clock (on the Avalon ST side)
- Low gate count

Applications

- High Frequency Trading (HFT)
 - Market makers, trading firms, stock exchanges
- High-performance datacenter networks
 - Enables world’s fastest key/value search over Ethernet
- Real-time Internet data collection
Ultra-Low-Latency 10GE PHY+MAC

10GE PHY+MAC Metrics

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit Turbo Mode MAC</td>
<td>38 nanoseconds average, 46.55 nanoseconds worst-case</td>
</tr>
<tr>
<td>32-bit Turbo Mode (322MHz) Roundtrip</td>
<td>57.8 nanoseconds average*, 62.06 nanoseconds worst-case*</td>
</tr>
<tr>
<td>64-bit Turbo Mode (161MHz) Roundtrip</td>
<td>80.68 nanoseconds worst-case*</td>
</tr>
<tr>
<td>Jumbo Frame Support</td>
<td>Up to 16,000 Bytes</td>
</tr>
<tr>
<td>FPGA Devices Supported</td>
<td>Intel Stratix V, Xilinx Virtex UltraScale+</td>
</tr>
<tr>
<td>FPGA Platforms Supported</td>
<td>Terasic DE5Net, ExaNIC V5P, Xilinx Alveo Series</td>
</tr>
</tbody>
</table>

*Measured on Xilinx Virtex UltraScale+ device on ExaNIC V5P platform

10GE PHY+MAC Diagram

- FPGA Application Logic
 - AXI/Avalon
 - AXI/Avalon
- 10GE MAC
 - MAC Tx
 - Statistics
 - MAC Rx
 - FPGA Platform Specific 10G PMA (SERDES)
 - Transceiver Module

- 10GE MAC Latency
- Roundtrip Latency

Ordering Codes

- Device: Intel Stratix V, Xilinx Virtex UltraScale+
- Platforms: Terasic DE5Net, ExaNIC V5P, Xilinx Alveo Series, Intel PAC D5005